Polarization of adenosine effects on intracellular pH in A6 renal epithelial cells.
نویسندگان
چکیده
The effect of adenosine on Na+/H+ exchange activity was examined in cultured A6 renal epithelial cells. Adenosine and its analogue N6-cyclopentyladenosine (CPA) had different effects on Na+/H+ exchange activity depending on the side of addition. Basolateral CPA induced a stimulation of Na+/H+ exchange activity that was completely prevented by preincubation with an A2A-selective antagonist, 8-(3-chlorostyryl)caffeine, whereas apical CPA induced a slight but significant inhibition of Na+/H+ exchange activity that was significantly reduced by the A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine. Protein kinase C activation may be involved in mediating the apical CPA inhibition of Na+/H+ exchange activity; this inhibition was prevented by the protein kinase C inhibitor calphostin C. Treatment with either forskolin or 8-bromo-cAMP significantly stimulated Na+/H+ exchange activity; only basolateral CPA addition induced an increase in cAMP level. These observations together with the finding that the CPA-dependent stimulation of exchange activity was prevented by the protein kinase A inhibitor H-89 support the hypothesis that basolateral CPA stimulates Na+/H+ exchange via adenylate cyclase/protein kinase A activation. Basolateral CPA also increased transepithelial Na+ transport, and this stimulation was prevented by the Na+/H+ exchange inhibitor HOE-694, suggesting that changes in pHi during hormone action can act as an intermediate in the second-messenger cascade.
منابع مشابه
Loss of cell volume regulation during metabolic inhibition in renal epithelial cells (A6): role of intracellular pH.
In renal ischemia, tubular obstruction induced by swelling of epithelial cells might be an important mechanism for reduction of the glomerular filtration rate. We investigated ischemic cell swelling by examining volume regulation of A6 cells during metabolic inhibition (MI) induced by cyanide and 2-deoxyglucose. Changes in cell volume were monitored by recording cell thickness (T(c)). Intracell...
متن کاملACELL September 46/3
Zeiske, Wolfgang, Ilse Smets, Marcel Ameloot, Paul Steels, and Willy Van Driessche. Intracellular pH shifts in cultured kidney (A6) cells: effects on apical Na1 transport. Am. J. Physiol. 277 (Cell Physiol. 46): C469–C479, 1999.—We report, for the epithelial Na1 channel (ENaC) in A6 cells, the modulation by cell pH (pHc) of the transepithelial Na1 current (INa), the current through the individu...
متن کاملMechanisms of Regulation of Epithelial Sodium Channel by SGK1 in A6 Cells
The serum and glucocorticoid induced kinase 1 (SGK1) participates in the regulation of sodium reabsorption in the distal segment of the renal tubule, where it may modify the function of the epithelial sodium channel (ENaC). The molecular mechanism underlying SGK1 regulation of ENaC in renal epithelial cells remains controversial. We have addressed this issue in an A6 renal epithelial cell line ...
متن کاملDevelopment of intercellular communication during the epithelial reorganization of a renal cell line (LLC-PK1).
Junctional permeability determinations after microinjection of the fluorescent tracer, Lucifer Yellow CH, show that the cells in confluent monolayers of the renal epithelial cell lines LLC-PK1 and A6 are interconnected by intercellular junctions. This cell-to-cell communication network permits the fluorescent dye to diffuse from the microinjected cell into multiple adjacent neighboring cells. C...
متن کاملAldosterone interaction on sodium transport and chloride permeability: influence of epithelial structure.
The effects of aldosterone on sodium transport and chloride permeability were investigated by electrophysiology in two structurally distinct epithelial used as models for the distal renal tubule: the A6 cell monolayer as compared with the amphibian skin epithelium (ASE). Short-circuit current (Isc) and transepithelial conductance (Gt) were measured in A6 monolayers incubated overnight with(out)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 51 3 شماره
صفحات -
تاریخ انتشار 1997